Connect with us

Hi, what are you looking for?

[stock_market_widget type="ticker-quotes" template="chart" color="#5679FF" assets="MSFT,AAPL,NFLX,GOOG,TSLA,NFLX,AMZN" animation="true" display_currency_symbol="true" api="yf" speed="50" direction="left" pause="true"]

Mining

Newly discovered protein supports efficient refining of REEs

In a recent paper published in the Journal of Biological Chemistry, researchers at ETH Zurich describe the discovery of lanpepsy, a protein which specifically binds lanthanides – or rare earth elements – and discriminates them from other minerals and metals. Because of their similarity to other metal ions, the purification of REE from the environment

newly-discovered-protein-supports-efficient-refining-of-rees

Terbium

In a recent paper published in the Journal of Biological Chemistry, researchers at ETH Zurich describe the discovery of lanpepsy, a protein which specifically binds lanthanides – or rare earth elements – and discriminates them from other minerals and metals.

Because of their similarity to other metal ions, the purification of REE from the environment is cumbersome and economical only in a few locations. Knowing this, the scientists decided to explore biological materials with high binding specificity for lanthanides as mechanisms that could offer a way forward.

Sign Up for the Battery Metals Digest

The first step was to review previous studies that suggest that nature has evolved a variety of proteins or small molecules to scavenge lanthanides. Other research groups have discovered that certain bacteria, methylotrophs that convert methane or methanol, have enzymes that require lanthanides in their active sites. Since the initial discoveries in this field, the identification and characterization of proteins involved in the sensing, uptake, and utilization of lanthanides, has become an emerging field of research.

To identify novel actors in the lanthanome, Jethro Hemmann and Philipp Keller together with collaborators from D-BIOL and the laboratory of Detlef Günther at D-CHAB, studied the lanthanide response of the obligate methylotroph Methylobacillus flagellatus

By comparing the proteome of cells grown in the presence and absence of lanthanum, they found several proteins not previously related to lanthanide utilization.

Advertisement. Scroll to continue reading.

Among them was a small protein of unknown function, which the team now named lanpepsy. In vitro characterization of the protein revealed binding sites for lanthanides with high specificity for lanthanum over the chemically similar calcium. 

Lanpepsy is able to enrich lanthanides from a solution and thus holds potential for the development of bioinspired processes for the sustainable purification of rare earths.

Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

You May Also Like

Stocks

SAN FRANCISCO (MarketWatch) — Among the companies whose shares are expected to see active trade in Thursday’s session are BlackBerry Ltd., Oracle Corp., and...

Mining

NAL spodumene concentrate production remains targeted for H1 2023 with revenue potential in Q3 2023. Credit: Piedmont Piedmont Lithium (Nasdaq: PLL; ASX: PLL) announced...

Tech

This holiday season, consider giving the gift of security with an ad blocker. That’s the takeaway message from an unlikely source — the FBI...

Top Stories

There have been major developments out of Japan this week. The Bank of Japan surprised the market by widening its yield curve target by...

Advertisement